
Machine Learning at 
the Network Edge 

for Automated 
Home Intrusion 

Monitoring
Jose Sepulveda



Authors

Aditya Dhakal, 
K. K. Ramakrishnan,

Both from UC Riverside



Outline
1. Introduction
2. Motivation
3. System design
4. Testbed Implementation
5. Algorithms used
6. Evaluation



Introduction (Background)
Security and monitoring of residences and businesses is a significant industry 
with lots of room for improvement. 

These security systems can range from simple ones, to very complex ones 
with people monitoring alarm triggers 24/7. 

These systems typically have loads of sensors, cameras, biometric scanners, 
motion sensors, and window/door sensors.

A false positive can be expensive! How do we reduce this?



Background (Setup)
A automated home/business monitoring system at the edge is proposed.

It preforms online learning on the incoming stream of data.

Monitoring framework is hosted on OpenNetVM, a Network Function 
Virtualization platform.



Background (NFV)
A subset of SDN

Allows for the specialized hardware tasks (firewalls, DPI, Load Balancers) to 
run in a virtualized enviroment on a server.

Why NFV?

For this application we need scalability, if the home has camera sensors we 
can spin up a new NF for face detection.



Motivation 
Monitoring systems are only becoming more complex, with new sensors and 
detection algorithms.

Having a human keep watch over the stream of data would be difficult. 

We need a scalable, cheap, and easily updated solution.



Motivation (Automated Monitoring)
3 different methods of automated monitoring:

● Include computation, communication, and sensors within each home.
● Sharing resources across all homes.
● Distributed edge computing on the neighborhood scale.



System Design
They focus on home monitoring by using a small apartment as an example. 

Homes and businesses may have significantly more complicated placements 
and sensors.



System Design
Sensor placement

M# - motion sensor



System Design
They define a “home entry” as a sequence of triggers of the sensors which 
starts as soon as the door is opened. 

Even if there is a camera present outside, the stream of data is not processed 
until the front door is opened.



System Design
Each sensor will send a time-stamped packet to the edge server at time of 
triggering.

An “home entry” path is not complete until the PIN is entered into the keypad.



System Design
Normal “home entry” paths.



System Design
They modeled there data for home entry after the real life home entry data 
collected in the kyoto dataset.

The Kyoto dataset is the data collected from the testbed used in:

“Activity Learning as a Foundation for Security Monitoring in Smart Homes”



NFV & Testbed Implementation
The NFV platform they used is OpenNetVM.

OpenNetVM is built on DPDK and docker containers.

DPDK - libraries/drivers built for fast packet processing.

Docker - Operating system level virtualization, avoids cost associated with 
creating and maintaining VM by using linux resource isolation features to 
create application specific containers.



NFV & Testbed Implementation
OpenNetVM’s use of docker allows for new NFs to be added easily and cost 
effectively.

This is important in the security market sector.

It provides:

● Variability in home Security options
● Able to add new NF’s to service new sensors
● Allows algorithm’s to run contained for performance and security.



NFV & Testbed Implementation
The testbed is a single system which intercepts packets coming from the 
various sensors.

For the tests, instead of using an actual apartment they used another system 
running OpenNetVM that generates traffic, it emulates the sensors, keypad, 
and even contains images.



Algorithms
They picked 4 features that they thought would be the most useful.

1. Time between activation of each sensor
2. Time taken to complete “home entry” event
3. The image from the camera sensor
4. The number of times the PIN is entered on the keypad



Algorithms
For each of the four features, their is an associated classifier.

Each classifier also provides a belief value between [0, 1]. This number is a 
measure of how confident the classifier is, 1 being fully confident.

 This belief number is used along with the Dempster-Shafer combination rule 
to reach an overall consensus.



Algorithms (K-NN)
Feature: Time between activation of each sensor

K nearest neighbor or K-NN is the classifier chosen for this feature.

A K-NN classifier is the right choice because it lacks a training phase, it’s 
online, and is based on feature similarity to classify into discrete groups 
(normal entry vs intrusion).

Belief value:



Algorithms (Disarm-Time)
Feature: Time taken to complete “home entry” event

x - the event
z - z-score of an inferred value
Ṍ - the mean time of entry
σ - standard deviation 
Φ(z) - probability from probability density function of the z-scores



Algorithms (Face Detection)
Feature: The image from the camera sensor

OpenFace, a free and open source face recognition solution using deep neural 
networks.

They used a pretrained model with 6000 images of 10 different celebrities.

It returns value between [0,1] on how likely a new image is of a member of it’s 
dataset.

Belief value: 



Algorithms (Keypad)
Feature: The number of times the PIN is entered on the keypad.

Classifies an intrusion if the PIN is entered more than 3 times incorrectly.

Belief value: 



Algorithms (Dempster-Shafer)
Dempster-Shafer theory is a widely used method to combine decisions from 
multiple ML classifiers and make an overall decision.

It requires no prior knowledge, meaning that is perfect for intrusion detection 
because it is independent of past scenarios.

D-S is used to combine all the decisions and reduce the false positive/negative 
rates.



Evaluation
The synthetic data was generated in the timescale of seconds. In order to 
evaluate it quickly they scaled it down to milliseconds.

This caused some complications for Openface, so they just inferred images 
separately and packets only contain results, no images.



Evaluation
They ran 2 testing scenarios.

For scenario 1, intruder enters the house looking for the keypad or things to 
steal. There was also no camera or keypad data.



Evaluation
They ran 2 testing scenarios.

For scenario 2, intruder enters the house and goes straight for keypad, and 
makes multiple attempts to disable it.



Evaluation (Belief)
Threshold for D-S to classify an entry as an intrusion is 0.75



Evaluation (Scalability)
They run a test where the system is servicing multiple homes.



Conclusion
D-S + varied classifiers is a good solution to reduce false positives/negatives.

Using NFV is a good way to make a scalable service for IoT related 
computation.

Criticisms:

● This paper was not written very well, many things were left out and 
English was ambiguous at times.

● They didn’t describe some of the classifiers well.

● They didn’t use the real camera feed.


